دانلود مقاله SemiدرSupervised Content Based Music Recommendatio

دانلود مقاله SemiدرSupervised Content Based Music Recommendation تحت pdf دارای 8 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد دانلود مقاله SemiدرSupervised Content Based Music Recommendation تحت pdf کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود مقاله SemiدرSupervised Content Based Music Recommendation تحت pdf ،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن دانلود مقاله SemiدرSupervised Content Based Music Recommendation تحت pdf :
سال انتشار: 1391
محل انتشار: یازدهمین کنفرانس سراسری سیستم های هوشمند
تعداد صفحات: 8
چکیده:
Nowadays, many online music stores operate on the World-Wide-Web. The music collection of such stores is approaching the scale of ten million tracks and this has posed a major challenge for searching, retrieving, and organizing music content. Many studies are done in content-based music information retrieval to overcome such difficulty. A promising approach which recently gained much attention is to train a classifier system to predict user priorities and recommend the appropriate music based on this prediction. Although various types of classifiers are incorporated into recommender systems, however, a classifier needs many labelled songs to reach an admissible recommendation. Thus, user should listen to countless songs and provide his opinion for each of them beforethe recommender system could effectively propose any appropriate song to him. In this paper, we offer a Semi Supervised Music Recommender (SS-MR) system which is able to recommend suitable songs with few number of labelled samples. In addition, the system can gradually adapt itself with new songs being added to the system or the user priorities changes over time. Thus training of system from scratch is not needed. Finally extensive experiments are performed with UCI and real world music datasets to evaluate the effectiveness of SS-MR system
دانلود این فایل
